Supreme Accuracy Power Roll-up/Put-in Micro Tension Controller DRC-607

USER'S MANUAL

Contents

1. Foreword	Page 2
2. Characteristics of DRC-607	Page 3
3. Functions of the Control Panel	Page 4
4. External Dimensions & Opening for Installation	Page 5
5. Terminal Connection	Page 6
6. Wiring of Control Loop	Page 7
7. Procedure of Roller Auto-Change	Page 8
8. Description of Terminals	Page 10
9. Setting Parameters	Page 12
10. Table of Parameters	Page 15
11. Description of Parameters	Page 17
12. Cautions for Test-Run and Operation	Page 22
13. Troubleshooting	Page 26

Thank you for using DRC-607 Supreme Accuracy Power Roll-up/Put-in Tension Controller. This system was specifically developed for clients who process materials that are either made of thin film, non-woven cloth, paper, or ultra fine fiber, etc. to match with the requirements of high speed and huge difference of rollers' diameter, re-roll after strip, and roller auto-change. Please read this user's manual before using 607 so as to become familiar with subsequent wiring, parameters setting, and troubleshooting. Please keep this user's manual handy for future reference.

Caution

- Forbid to wire or install/remove the connector of 607 Controller when the power is turned on, in order to avoid any risk or damage to 607 Controller.
- Terminals 6-21 of 607 Controller are for signals input and output, please do not connect with AC power to prevent damage from occurring.
- Do not connect D/A output terminals 20(+) and 21(-) of 607 controller to AC power or allow the wrong voltage to enter.
- Do not remove the housing of the controller or perform voltage resistance tests on components of the controller.
- Record and keep parameters of 607 Controller after test-run.

- 2. Characteristics of DRC-607
- 607 Controller can work with inverters and DC motors to perform the high precision tension control of material roll-up/put-in.
- Working with VR detector, 607 Controller can perform micro tension control as well as calculate external diameter and roller-change automatically.
- As far as controlling sequence is concerned, all it takes is putting an encoder to master motor shaft to enable 607 system to start with the master system consequently. In addition, for pure digital computation purposes, the functions will remain the same as long as parameters are the same. Thus no more calibration is required.
- 607 control system automatically adjusts and controls the modifying volume based on the diameter of material roll-up/put-in roller. Consequently, VR stoke can be shortened and control of material roll-up/put-in between huge difference rollers' diameter achieved. The requirement for high precision tension control can also be accomplished.
- The 607 possesses red and green LED dual display function. The red LED displays the rotating speed of slave motor, difference of E1/E2, output of D/A, input of A/D and the change in external diameter (See parameter Pr09 for details) while the green LED displays the initial value.
- According to mechanical and production changes, parameters of the 607 such as ratio of mechanical gear, function selections of the software, ratio of calculus, times setting of VR input can be adjusted accordingly.
- Function of 4 divide of encoder can be set up internally, using encoder of lower revolution without compromising precision. For instance, a motor of 200P/R can be resolved to 0,1,2,3,...799,800.
- The 607 has a unique design to separate different power sources. For this reason, it is superior in resisting interference.

3. Functions of the Control Panel

- The upper red LED displays the content of parameters when changing parameters. After the setting is completed, display mode can be selected through parameter 9.
- The lower green LED displays the parameter number when changing parameters. After the setting is completed, it displays proportion setting.

4. External Dimensions & Opening for Installation

Dimensions of the opening on the panel of the control box

Panel opening: 92 x 92 m/m

5. Diagram of Terminal Connection

Note 1: When terminals 15 and 17 are short-circuited, 607 accepts VR input signal, but does not perform external diameter calculation. When they are open, 607 both accepts VR input signal and perform external diameter calculation. Note 2: When terminals 15 and 17 are open, proportion sequential control starts. When they are short-circuited, tension control is engaged. When the system starts, wait till proportion sequential control stabilizes and manual arrangement is in position before engaging tension control.

6. Wiring of Control Loop Diagram

7. Procedure of Roller Auto-Change

		Rolle	er A	Roller B		
	INV		ON	INV		OFF
		15	COM		15	COM
Roller A positioning manual roll-up	Terminal	16	ON	Terminal	16	OFF
	607	17	ON	607	17	OFF
		18	OFF		18	OFF
		19	OFF		19	OFF

		Rolle	er A	Roller B		
	INV		ON	INV		OFF
Automatic engagement of tension control		15	COM		15	COM
	Terminal	16	ON	Terminal	16	OFF
	607	17	OFF	607	17	OFF
		18	OFF		18	OFF
		19	ON		19	OFF

		Rolle	r A	Roller B		
	INV		ON	INV		OFF
Replacement		15	COM		15	COM
of roller B	Terminal	16	ON	Terminal	16	ON
	607	17	OFF	607	17	OFF
		18	OFF		18	OFF
		19	ON		19	OFF

Roller B positioning cut startup		Rolle	r A	Roller B		
	INV		ON	INV		OFF
		15	COM		15	COM
	Terminal	16	ON	Terminal	16	ON
	607	17	OFF	607	17	OFF
		18	OFF		18	OFF
		19	ON		19	OFF

		Rolle	r A	Roller B		
	INV		ON	INV		OFF
Cut complete and		15	COM		15	COM
re-roll complete	Terminal	16	OFF	Terminal	16	ON
	607	17	OFF	607	17	OFF
		18	OFF		18	OFF
		19	OFF		19	ON

	Roller A			Roller B		
	INV		ON	INV		OFF
Roll-up complete and		15	COM		15	COM
	Terminal	16	ON	Terminal	16	ON
roller A startup	607	17	OFF	607	17	OFF
		18	OFF		18	OFF
		19	OFF		19	ON

Replacement of roller A		Rolle	r A	Roller B		
	INV		ON	INV		OFF
		15	COM		15	COM
	Terminal	16	ON	Terminal	16	ON
	607	17	OFF	607	17	OFF
		18	OFF		18	OFF
		19	OFF		19	ON

Roller A positioning cut startup		Roller A			Roller B		
	INV		ON	INV		OFF	
		15	COM		15	COM	
	Terminal	16	ON	Terminal	16	ON	
	607	17	OFF	607	17	OFF	
		18	OFF		18	OFF	
		19	OFF		19	ON	

Note: Power is supplied by one of the 607s to VR detector. VR signals are entered into two 607s simultaneously at terminals 7 and 8.

8. Description of Terminals

Power	Terminals 1 and 2 are the AC power source with AC220V±10% and 50/60HZ. Terminal 3 is the third grounding.
Warning output	Terminals 4 and 5 are the A contacts for error output. RELAY outputs when the signal cumulative differential of E1 and E2 reaches the preset value of parameter Pr17. RELAY is back to non-output status when the differential is smaller than the preset value with the capacity of the RELAY connecting point being 1A 250VAC.
A/D input	Terminals 6, 7, and 8 are for A/D input with resolution of 2^{10} and input impedance of 100K $$. They are the input contacts for VR detector.
E1 and E2	Terminals 9(+) and 10(-) are the power source for encoder with DC12V \pm 3% and 100mA (MAX).
Encoder input	Terminals 11 and 12 are for inputting signals to master motor encoder. Terminals 13 and 14 are for the feedback of signals to roll-up/put-in motors.
System initiation	System initiates when terminals 15 and 16 are short-circuited. It stops when the contacts are open.
Setting parameters	When terminals 15 and 17 are short-circuited, 607 accepts tension detector to input command without calculating external diameter.
Reset external diameter	When terminals 15 and 18 are short-circuited, 607 automatically calculates recovery of external diameter. Note 1: Recovery of roller diameter can only be performed when roll-up/put -in stops.

Control mode	Terminals 15 and 19 OFF: ratio control (do not accept tension signals). ON: tension control.
D/A output	Terminals 20(+) and 21(-) are for D/A to output 0-10V to inverter or DC controller. Use metallic meshed insulated wires for wiring and make sure to keep them insulated from power wires. /erse the positive (+) and the negative (-).
Communication interface	Terminals 22, 23, and 24 are the 485 communication interface.

9. Setting Parameters

Basic requirements: Password: Parameter 1 needs to be set at 1000 to protect it from being changed.

Procedures:

1. Press Mode, the panel shows that you have entered parameter 1

4. The panel shows: indicating you are now in parameter 2

5. If parameter 2 needs to be changed, press SET to enter the change mode. Then press or to make the desired selection. Press SET when finished, the panel will move to parameter 3. Repeat above steps. 6. If you just want to change the phase of parameter 5, press to move the phase of parameter to

Then press SET to enter the change mode. Press SET after the change is made. Then press MODE to return to the operate mode.

Example: The procedures needed to change parameters 3 and 10 are demonstrated as follows:

10. Table of Parameters

Parameter	Description	Range	Pre-shipment	Note
Code			Setting	
Pr01	Enter password	0000 - 9999	1000	
Pr02	P (proportion) sensitivity revised	1 - 10	1	
	value			
	(the larger the faster of the reaction)			
Pr03	I (integral) sensitivity revised value	1 - 10	1	
	(the larger the faster of the reaction)			
Pr04	Proportion value revised K value	0001 - 9999	1000	
Pr05	Line speed revised K value	0001 - 9999	1000	
	(0.0001 – 0.9999)			
Pr06	Error judgment, PPR	0001 - 9999	1000	
Pr07				
Pr08	Inactive			
Pr09	0: RPM	0 - 5	1 (E1-E2)	
	1: E1 - E2			
	3: VR position			
	5: Inverse ratio of external			
	diameter			
Pr10	Operating mode	0 - 1	0	
	0: Speed tracking			
	1: Angle tracking			
Pr11	D/A output limit	0 - 1	0	
	0: No			
	1: Yes			
Pr12	ENCODER number per rotation	10 - 60	20	
	(x 10)		(200P/R)	
Pr13	Highest RPM of the motor	8 - 40	18(1800)	
	(x 100)			
Pr14				
Pr15				
Pr16	Inactive			
Pr17				
Pr18				

Pr19	Position of decimal point in upper row	0 - 3	0	
Pr20	Position of decimal point in lower row	0 - 4	0	
Pr21	Master ENCODER reverse setting	0/1	0	
	0 : Normal			
	1 : Reverse			
Pr22	Slave ENCODER reverse setting	0/1	0	
	0 : Normal			
	1 : Reverse			
Pr23	Upper limit for proportion setting	00000 -	12000	
		19999		
Pr24	Lower limit for proportion setting	0000 -	05000	
		9999		
Pr25	Display proportion setting key lock	0 - 1	0	
Pr26	A/D input integral	1 - 200	5	
		(0.01 -		
		2.05)		
Pr27	E1-E2 differential non-response range	0 - 10	4	
Pr28	Inactive			
Pr29	Inactive			
Pr30	Tension setting point	0 - 10.00V	5.00V	
Pr31	Tension 10V input corresponding value	0 - 2000	1000	1:1
Pr32	VR offset setting center, accelerating	0 - 5.00V	±2.00(V)	
	offset setting of Pr35 calculating speed			
Pr33	Tension non-response range	1 - 255		
Pr34	Tension P value (proportion revised	0 - 10.00	0.40	
	value)			
Pr35	Tension I value (integral revised value)	0 - 255	10	
Pr36	Startup deviation delay time	0-10.0秒	1	
Pr37	P limit range (maximum proportion	0 - 25.5%	100	
	revision)			
Pr38	I limit range (maximum proportion	0 - 1000	1000	
	revision)			

11. Description of Parameters

- Pr01 Password: Preset at 1000. If it isn't 1000, press or till it is. Then press SET to complete this step.
- Pr02 Controlling reaction sensitivity: Setting range 1 10 with a minimum of 1 and a maximum of 10. Setting has to be made in conjunction with Pr03 when tracking positions.
- Pr03 Setting position tracking sensitivity: Range 1- 10 with a minimum of 1 and a maximum of 10. This parameter is not used if Pr10 is set to track speed.
- Pr04 Setting basic external diameter: Range 100 1200 with 1000 at time of roll-up and 100 200 at time of put-in. Motor RPM is set according to roller diameter ratio.
- Pr05 Display revised K value: Range 0.001 9.999, which is used when Pr09 is set at 0. Adjustment is made by dividing actual speed by indicated speed with the quotient rounded off to the third place to the right of the decimal point. Actual speed/Indicated speed = XXXX
- Pr06 Setting E1-E2 differential: Range 1 9999P/R. The RELAY outputs when E1-E2 differential is equal to or larger than the preset value. This function can be used for protection purposes. The setting has to be 500 or above.

Note: It is valid only when Pr10 is set at 1.

Reserved

Reserved

- Red LED display selection
 - 0: RPM display

1: E1 - E2 display. Select this when test-run. Then adjust Pr02 and Pr03 according to E1 - E2 to make control smoother.

3: A/D input voltage value: indicating the A/D input voltage value of terminals 7 and 21, and is able to determine whether A/D is input.

5: Being able to indicate external diameter inverse ratio revision. Pr04 calculates changes according to external diameter.

- Pr10 Operation control mode
 - 0: Tracking speed
 - 1: Tracking position the whole time
- Pr11 A/D input operation mode
 - 0: No input
 - 1: Reserved
 - 2: Tension revision input value
- Pr12 Per rotation resolution PPR input value (÷10) from motor Encoder: enter 20 when using 200 PPR Encoder while enter 60 when using 600 PPR Encoder.
- Pr13 Setting RPM (÷100) when slave motor is at its top speed: if motor is 4P, top frequency of inverter is set at 90Hz, rpm 2700, set at 27. If motor is 6P, top frequency of inverter is set at 60Hz, rpm 1200, set at 12.
- Pr14 Reserved

Pr15
Pr16
Pr17
Pr18
Pr19

Reserved Reserved

- Reserved
- Reserved

Change the decimal point position of the red LED

- 0: 0000.
- 1:000.0
- 2: 00.00
- 3: 0.000

Pr20

Change the decimal point position of the green LED

- 0: 0000.
- 1: 000.0
- 2: 00.00
- 3: 0.000
- Pr21

Master input encoder phase: 0 is positive phase and 1 is reverse. At startup, if the phase of master encoder is incorrect, 607 will detect automatically and display Err02. Simply change this parameter to avoid inconvenience caused by possible re-wiring.

- Pr22 Phase of slave motor encoder: 0 is positive phase and 1 is reverse. At startup, if the phase of slave encoder is incorrect, 607 will display Err04. Simply change this parameter to avoid inconvenience caused by possible re-wiring.
- Pr23 Upper limit for proportion value setting: proportion 0.001 9.999 if set at 2.000, proportion value can only go as high as 2.000 by pressing .
- Pr24 Lower limit for proportion value setting: proportion 0.001 9.999 if set at 0.500, proportion value can only go as low as 0.500 by pressing .
- Pr25 Display proportion setting lock:
 - 0: Inactive

1: Locked according to current display value. Do not change proportion setting.

Pr26 Terminals 7(+) and 8(-). The larger the number selected, the more stable the A/D input integral time and the longer the response time.

Setting encoder E1 - E2 differential insensitivity range.

- Reserved
- Reserved

Pr3(

Setting point for tension revision (set Pr09 at 3). Assume at time of A/D input, VR detects the top value to be 8.00 with the bottom value stand at 300. Set this parameter at 550.

- Pr31 The K value that displays corresponding to A/D input 0-10VDC. Example: if set at 1000, it will be 0-10VDC with the displayed number being 0-1000.
- Pr32 When calculating tension control, if VR center differential is larger than this setting, the calculating speed of Pr35 tension I value doubles.
- Pr33Setting tension insensitivity range. If the setting is 3, it means
insensitivity range to be within ± 3 of Pr30's setting point.
- Pr34 is the tension P value and the revised K value, which is the instantaneous revision detected by VR. The larger the number means the more the revision.
- Pr35is the tension I value and the revised K value, which is the revisedspeed derived from calculating the external diameter. The largerthe setting means the faster the external diameter revision.
- Pr36 is the differential revision delay time at startup with an increment of 0.1 second.
- Pr37 is the P value limit range. If set at 150, it will be top revision amount ±15%. This parameter has to be set in conjunction with Pr34.
- Pr38 is the I value revision range. This parameter is set according to roller diameter ratio (full roller ÷ empty roller).

12. Cautions for Test-Run

- 1. Check the following items.
- Make sure the power that enters 607's terminals 1 and 2 is AC220V±10%.
- Make sure the A and B output signals coming from master motor's encoder (E1) are directed to 607's terminals 11 and 12.
- Make sure the A and B output signals coming from roller motor's encoder (E2) are directed to 607's terminals 13 and 14.
 Connect the insulation net of the master (slave) encoder's insulation wires to terminal 10 of 607.
- Terminals 15 and 16 have to be short-circuited at time of synchronization.
- Make sure VR detector is connected to terminals 6, 7, and 8 and signals are not inversely connected.
- The D/A output from terminals 20(+) and 21(-) of 607 has to be directed to the analog frequency number command contact of slave motor's inverter.
- Master motor's acceleration/deceleration time setting has to be larger than
 It would be best to be larger than 10.
- 3. Slave motor's acceleration/deceleration time setting has to be smaller than 5. It would be best to be smaller than 3.

Note: Contact us if acceleration/deceleration time setting needs to be larger than 1 second.

- 4. The best startup frequency for slave motor's inverter is 0.1Hz.
- 5. The cord used for 607's D/A output to inverter has to be insulated and separated from the power cord. Connect the insulation net to the 0V contact for input of inverter's signals.
- 6. Under normal circumstances, terminal 15 of 607 should be short-circuited with terminals 16 and 19 while terminals 17 and 18 are open.

- 7. To adjust the proportion value, simply press the and on the control panel. It is indicated on the green LED.
- 8. The following procedures are for the first test-run of 607:
- Calibrate basic speed proportion as follows:
 - (1) Set Pr10 at 0 and Pr9 1.
 - (2) Open terminals 15 and 19.
 - (3) Pr04 set at 1000 at time of roll-up.

Settings at time of put-in to be 1000 × $\frac{1}{\text{Roller diameter ratio}}$ Example: empty roller is 100mm, full roller is 400mm, roller diameter ratio 4:1

 $1000 \times 1/4 = 250 (Pr04)$

- (4) Start up the master and roller calibration speed.
- (5) For speed revision proportion, press or to synchronize roller surface speed calibration with main speed.
- (6) Check to see if the change of E1-E2 on the red LED is single digit (it would be best to change between +1 and -1). Adjust inverter's acceleration/deceleration time and Pr02 and Pr03 if the change is double digit or more, to bring the change down to single digit.

Check VR detector input OK.

1. Set Pr09 at 3 and observe VR variations. Manually move VR wheel. The number has to be increasing between the lowest and highest points with the varying number of DC 4V at the least.

2. Set Pr30 VR center point.

(Highest number + lowest number) \div 2 = Pr30 setting

- 3. Set Pr33 insensitivity range of basically 1-5 digits.
- 4. Set Pr34 at 0.20-1.00 according to

(Highest number - lowest number) x Pr34 = 20-30% of green LED basic proportion

- 5. Set Pr35 at 5-30. This value is decided according to the thickness of the material and production speed. The thicker the material means the larger the number.
- Engage synchronization test-run. The speed starts at 10%. Adjust various 607 parameters to the best conditions before accelerating to 100%.

9. Troubleshooting at test-run.

Requirements: Set both Pr09 and Pr10 at 1.

1. Normal.

2. Master starts while slave motor does not.

Possible causes:

(1) START contacts (terminals 15 and 16) are not short-circuited.

(2) Proportion set at 0000 or proportion K value being 0000.

(3) Inversely input E1 of master motor encoder.

Note: 416 displays Err 2 if the phase of master motor encoder is inversely connected.

(4) E1 signal of master motor encoder not connected to terminals 11 and 12 of 406. The RUN light flashes.

(5) D/A output points 20(+) and 21(-) wrongly connected or D/A malfunctions.

3. Master starts. Slave motor is at full speed.

Possible causes:

(1) The A and B phases of the slave encoder are inversely connected.

607 displays Err4 if slave motor is inversely connected.

(2) Slave encoder E2 input circuits are wrongly connected or E2 malfunctions.

(3) D/A malfunctions. Total voltage DC10V output.

(4) Proportion setting is too high.

4. Slave motor speed is unstable.

Change Pr10 to 0 before re-test. If normal, meaning slave motor torsion is not big enough to overcome inertia. Change Pr02 and Pr03 before re-test. If not working, meaning position cannot be used to track module and Pr10 needs to be changed to 0.

5. VR wheel is overly vibrating.

Adjust the open proportion value of terminals 15 and 19. Check to see the stability of the roll-up motor is within ± 0.1 Hz. If not, adjust as stated in the previous item. If yes, change the variations of Pr34 and Pr35 for best results.

13. Troubleshooting

Red LED	ERR	RUN	Abnormalities	Solutions	
display	light	light			
0000		flashes	Motor speed zero. E1 signal	Check to see if E1 encoder and roller	
			not entered.	connector are out of order and if the	
				signal cord is problematic	
	lit		Slave motor speed zero. E1/E2	E1/E2 signal cords switched places	
number			signal cords inversely		
appears			connected		
			Slave motor speed zero. E1	E1 signal cord A and B switched places	
Err. 2			signal cords A and B inversely	or parameter 21 changed.	
			connected		
			Slave motor speed zero. E2	E2 signal cords A and B switched places	
Err. 4			signal cords A and B inversely	or parameter 22 changed.	
			connected		
	lit		Slave motor at full speed	1. Proportion value wrongly set	
				(proportion set overly high)	
				2. Check to see if encoder E2 is out of	
				order	
				3. Is circuit wrongly wired	
				4. Controller D/A out of order	
	lit		Slave motor speed zero.	Check to see if D/A signal cords are	
			Problematic D/A output to	properly connected to inverter and if	
			inverter circuit or inverter	inverter is down or malfunctions	
			malfunctions		
			Slave motor speed unstable	1. 416 calculates too fast. Inverter cannot	
				catch up.	
				Lower parameters 02 and 03	
				2. Acceleration/deceleration time of	
				inverter improperly set. Adjust the time	
				to 0.3 second	
				3. Insufficient motor torsion (increase	
				horsepower)	
			Proportion value originally set	1. Encoder and motor axis skid. Check	
			to be able to synchronize, but	fixed position and roller connector	
			to be adjusted to other	2. Encoder signal left out. Check single	
			proportion soon	rotation signal and specifications for	
				omissions	

Understand the normal conditions under which DRC-607 operates before deciding whether it is problematic. Its normal conditions are described as follows:

1. On power on, its control panel display LED has to be lit. If no number displays, check to see if terminals 1 and 2 have 220V AC power. If the power supply is OK, it means the power supply is problematic and needs to be replaced.

2. At startup (terminals 15 and 16 have to be short-circuited), after terminals 15 and 16 are short-circuited, which means 607 starts carrying out its assignment or waiting for instructions. There are 3 LED lights to the left of 607 panel. The RUN light can be used to determine the following statuses:

1. Terminals 15 and 16 are open. RUN light is off.

2. Terminals 15 and 16 are short-circuited. RUN light is on. Standby: flashes

Working: all lit. As long as the E1 encoder phase of the master correctly transmitted into 607, this light has to be fully lit. If it still flashes, it means master encoder signal has not yet reached terminals 11 and 12 of 416. Check the cord.

3. ALM light is on when E1-E2 value exceeds the preset value of Pr06. Note: This feature become inactive when Pr10 is set at 0 because E1-E2 value does not exceed the preset value of Pr06 in speed tracking mode.